COP-coated vesicles

نویسندگان

  • Natalia Gomez-Navarro
  • Elizabeth A. Miller
چکیده

Approximately one third of a cell's proteins are destined to function outside the cell's boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

zeta-COP, a subunit of coatomer, is required for COP-coated vesicle assembly

cDNA encoding the 20-kD subunit of coatomer, zeta-COP, predicts a protein of 177-amino acid residues, similar in sequence to AP17 and AP19, subunits of the clathrin adaptor complexes. Polyclonal antibody directed to zeta-COP blocks the binding of coatomer to Golgi membranes and prevents the assembly of COP-coated vesicles on Golgi cisternae. Unlike other coatomer subunits (beta-, beta'-, gamma-...

متن کامل

A link between ER tethering and COP-I vesicle uncoating.

The yeast Dsl1p vesicle tethering complex, comprising the three subunits Dsl1p, Dsl3p, and Tip20p, is stably associated with three endoplasmic reticulum-localized Q-SNAREs and is believed to play a central role in the tethering and fusion of Golgi-derived COP-I transport vesicles. Dsl1p also interacts directly with COP-I subunits. We now show that binding of Dsl1p to COP-I subunits involves bin...

متن کامل

En bloc incorporation of coatomer subunits during the assembly of COP- coated vesicles [published erratum appears in J Cell Biol 1994 Jul;126(2):589]

The cDNA encoding epsilon-COP, the 36-kD subunit of coatomer, was cloned from a bovine liver cDNA library and sequenced. Immunoblotting with an anti-epsilon-COP antibody showed that epsilon-COP exists in COP-coated vesicles as well as in the cytosolic coatomer. Using the cloned cDNA, recombinant His6- tagged epsilon-COP was overexpressed in cultured Chinese hamster ovary (CHO) cells, from which...

متن کامل

Mechanisms of vesicle formation: insights from the COP system.

The major cytosolic and membrane proteins that represent machinery of coat protein (COP)-coated transport vesicles within the secretory pathway are characterized to date. This has allowed investigation of the molecular mechanisms that underlie the formation of these vesicles. In vitro binding studies and reconstitution experiments have provided insights at the molecular level into the biogenesi...

متن کامل

COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system

Rat liver Golgi stacks fragmented when incubated with mitotic but not interphase cytosol in a process dependent on time, temperature, energy (added in the form of ATP) and cdc2 kinase. The cross-sectional length of Golgi stacks fell in the presence of mitotic cytosol by approximately 50% over 30 min without a corresponding decrease in the number of cisternae in the stack. The loss of membrane f...

متن کامل

Sorting by COP I-coated vesicles under interphase and mitotic conditions

COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N-acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016